Recent Results from Belle and Prospects for Belle II

Mikihiko Nakao (KEK)

mikihiko.nakao@kek.jp

28 January 2015 Yongpyong/High1 Joint Winter Conference

Outline

- (1) Introduction and Motivation
- (2) Very Quick Tour of Selected Topics on Recent Results / On-going Studies / Belle II Sensitivities
 - Precision measurement of Unitarity Triangle
 - Pure leptonic decays $B \rightarrow \tau \nu$ and $B \rightarrow \mu \nu$
 - τ lepton flavor violation (LFV)
- (3) SuperKEKB / Belle II Status (4) Summary

Belle data analysis is still on-going and many interesting results (not shown today) will be presented sooner or later

Introduction and Motivation

Role of Belle and Belle II

- No established evidence (except for neutrino mass) in HEP, but New Physics must be there to account for observations in cosmology and theoretical demands
- $\mathbf{\hat{g}}^{2}$ Flavor physics is able to access the mass scale beyond LHC

Complementarity: if LHC discovers SUSY, the next challenge is the symmetry breaking mechanism, for which the coupling to flavor is the key

Belle Datasets

1999.5.31 - 2010.6.1

— assumptions in $\Upsilon \pi \pi$: no continuum, common phase in interference term

$\Upsilon(5S)$ still mysterious

- Earlier Belle data showed possible shift in " $\Upsilon(5S)$ " peak (?)
 - R_b has large continuum contribution and less reliable
 - Further update should be with more data on $\Upsilon(nS)\pi\pi$
- ✓ "Ali peak" at 10.9 GeV in BaBar dataset is not confirmed

$\bigcirc Z_b$ saturates $\Upsilon(5S)$ decay width (?)

- $\sum \Upsilon(nS)\pi^+\pi^-$: 17 ± 1% of R_b at $\Upsilon(5S)$
- Assuming isospin, $\Upsilon(nS)\pi^0\pi^0$ contributes 0.5× more
- Almost all $\Upsilon(nS)\pi^+\pi^-$ is through $Z_b^{\pm}\pi^{\mp}$
- Adding $\Upsilon(5S) \rightarrow Z_b \pi \rightarrow h_b \pi \pi \Rightarrow 42 \pm 4\%$ (including isospin)
- Adding $\Upsilon(5S) \to Z_b \pi \to (B^* \overline{B}^{(*)} \pi) \pi \Rightarrow \mathbf{109} \pm \mathbf{15\%}$ (incl. isospin)

• Very little room left for $\Upsilon(5S) \to B_s^{(*)}\overline{B}_s^{(*)}$ (!?)

Belle Monuments

CP violation in $B \rightarrow J/\psi K_S$

Penguin decays $B \rightarrow X_s \gamma$

$\frac{\sin 2\phi_1 = 0.668 \pm 0.023 \pm 0.013}{2}$

Charm mixing

New Particles

Non-trivial test of the SM — mission completed?

But still coarse if magnified

Demand for more data!

Belle II alone can push down to limit to overconstrain, or...

Dalitz ($K_S \pi^+ \pi^-$) Exclusive $B \to D^{(*)} \ell \nu$ + LQCD (interference between D^0 and \overline{D}^0)

ϕ_1 prospects

	ΔS	ΔA
Physics parameters	± 0.001	< 0.001
Vertexing	+0.008 -0.009	± 0.008
Resolution function	± 0.007	± 0.001
Flavor tagging	$+0.004 \\ -0.003$	± 0.003
Fit bias	± 0.004	± 0.005
$J/\psi K_S$ signal fraction	± 0.002	± 0.001
$J/\psi K_L^0$ signal fraction	± 0.004	$+0.000 \\ -0.002$
$\psi(2S)K_S$ signal fraction	< 0.001	< 0.001
$\chi_{c1}K_S$ signal fraction	< 0.001	< 0.001
Background Δt	± 0.001	< 0.001
Tag-side interference	± 0.001	± 0.008
Total	± 0.013	± 0.013

Belle analysis has completed for ϕ_1

- Belle II ultimate $\delta(\sin 2\phi_1) \sim 0.01$
 - Statistical error reach \sim 0.003
 - Better vertexing with Pixel + SVD by a factor of ~two

(Systematic error \sim 0.012 in Belle II Physics Book should further decrease)

$oldsymbol{\phi}_2$ status — new $B^0 ightarrow \pi^0 \pi^0$ result M.Petric at ICHEP2014

- Final results to include $A_{CP}(B \to \pi^0 \pi^0)$
- BF reduced from previous Belle $(2.3^{+0.4}_{-0.5}, -0.3) \times 10^{-6}$, also smaller than BaBar $(1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$
- Getting closer to SM expectation
- On-going analysis for final Belle dataset: $B o
 ho \pi$, $B o
 ho^+
 ho^-$ Belle analysis is still on-going for ϕ_2

ϕ_2 prospects

Vub prospects

- Inclusive: $b \rightarrow u \mid v + OPE /$ § Assign additional error on m_b , O(50 MeV).
- Exclusive: $B \rightarrow \pi | v +$ Form factors (LQCD used)

- Tension between inclusive and exclusive is not resolved yet
- Current 10% error \Rightarrow 3% by Belle II 50 ab⁻¹
- LHCb has no contribution, Lattice QCD progress is expected

UT comparison

- Significant contribution to $\phi_3(\gamma)$ from LHCb, but otherwise measurements will be dominated by Belle II
- More non-trivial constraints from Δm_d , ϵ_K (if LQCD improves), and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ by E14(KOTO)@J-PARC

Belle II is the key to this non-trivial test

0.6

0.5

0.4

0.3

0.2

0.1

0 -0.4

$B \to \tau \nu, B \to \mu \nu$

Charged Higgs in B Decays

Η

- 2HDM: $\mathcal{B}(B \to D\tau\nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^+}^2} \tan^2 \beta)$
- A Hadronic-tag analysis is almost ready, **to be announced soon** and other analysis methods are also on-going, but not discussed today

B reconstruction tag

Hadronic Tag

- Sum of many many hadronic B decays
- Neural-net based algorithm improved the efficiency by a factor of two
- Not so high efficiency \sim 0.2%

Semileptonic tag

- Reconstruct $B \to D^* \ell \nu$ in the other side (ν is missing)
- Possible only at $\Upsilon(4S) \rightarrow B\overline{B}$ + nothing

(M.Feindt et al, NIM A654,432(2011))

B ightarrow au u with SL-tag

- Update from 657M $B\overline{B}$ result to reprocessed 772M $B\overline{B}$
- $\tau \rightarrow \rho \nu$ mode added to $\tau \rightarrow e \overline{\nu} \nu$, $\mu \overline{\nu} \nu$, $\pi \nu$ modes
- SL tag improvement by neural net (similar to hadronic-tag)
- Improvement in selection, 2D fit to extract signal

$B ightarrow oldsymbol{ au} u$

- In 2012, Belle's hadronic-tag $\mathcal{B}(B \to \tau \nu)$ dropped significantly
- In 2014, Belle's SL-tag $\mathcal{B}(B o au
 u)$ also somewhat dropped
- Tension in UT decreased by Belle's final results
- Belle+BaBar final results are all done, but still none of them exceeding 5σ , need Belle II for next step

$B ightarrow \mu u$

- Same formula as $B \rightarrow \tau \nu$ interesting if different!?
 - charged Higgs and helicity suppression by the same amount
 - V_{ub} and f_B have the same effect
- Simple final state, no need to tag the other side (untag)
- Signal: high momentum monotonic lepton above $b \rightarrow u \ell \nu$ tail
- Analysis of final dataset is on-going, but most likely to be measured in the early Belle II

$B ightarrow \mu u$ with hadronic-tag

- Hadronic-tag cleans up almost all backgrounds
- Good p_{ℓ} resolution, also sensitive to massive hidden particle, $B^+ \rightarrow \ell X$ [talk by CS.Park/Yonsei on Friday]
- Efficiency is not competitive as untagged analysis

No events were found in Belle's full data, UL set at

$$\mathcal{B}(B
ightarrow \mu
u) < 2.7 imes 10^{-6}$$

 $\mathcal{B}(B
ightarrow e
u) < 3.4 imes 10^{-6}$

Belle II data should be able to clearly observe at least $B \rightarrow \mu \nu$ mode

$\tau \; \mathrm{LFV}$

au LFV

Strongly forbidden in SM ($\mathcal{B} \leq 10^{-49}$ thru ν -mixing)

No theory uncertainty, firm evidence of new physics

• Radiative LFV ($au o \mu \gamma$ and $au o e \gamma$) thru slepton mixing

largest *B* in SUSY-seesaw / SUSY-GUT models

Higgs mediated LFV ($au o \ell \mu^+ \mu^-$, $au o \ell h^0$)

Higgs coupling \propto mass, $\mu^+\mu^-$ and $s\overline{s}$ (η , η' , ...) are favored

Separation power between SUSY models, difference between LFV measurements is crucial information

τ LFV analysis

1 85

18

$oldsymbol{ au} o \mu oldsymbol{\gamma}$ status

 $M_{\mu\gamma}^{bc}$ (GeV/c²)

τ LFV Prospects

- Belle+BaBar has already reached existing BSM predictions
- $\tau \to \ell \gamma$ down to the 10⁻⁹ order (propotional to 1/ $\sqrt{\mathcal{L}}$), $\tau \to \ell \ell \ell$ down to the 10⁻¹⁰ order (propotional to 1/ \mathcal{L})
- Predictions cover Belle II range, but also ranges further below

 au LFV is in competition with $\mu \to e\gamma$ search

SuperKEKB / Belle II Status

SuperKEKB under construction

3elle and Belle II — Mikihiko Nakao — p.3

Belle II detector

CsI(TI) EM calorimeter:

waveform sampling

electronics,

pure Csl for end-caps

4 layer inner tracker → 2 layers PXD (DEPFET) + 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

Belle II Technical Design Report: arXiv:1011.0352

RPC μ & K_L counter: scintillator + Si-PM for end-caps

7.24 m

13.3 m

7.1 m

Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation counter (barrel), Proximity focusing Aerogel RICH (forward)

Vertex detector

0.3 **D0 Impact Parameter Resolution** Belle II - PXD+SVD tracking (MC) 0.25 Belle II - SVD only tracking (MC) Belle - SVD2 cosmic (Data) 0.2 0.15 ع ط 0.1 0.05 0 0.5 1.5 2 2.5 3 3.5 p β sin(ϑ)^{3/2} [GeV]

6-layer SVD+PXD at DESY beamtest 2014.1

- SVD real data
- Track reconstruction
- PXD and telescope extrapolation

Central drift chamber

2014.1.14 Stringing 51,456 wires completed 2015.1.21 Transpotation to Tsukuba hall

Time of projection counter

Electromagnetic Calorimeter

Timeline

(Y.Ushiroda, SVD-BPAC 2014.11)

Summary

Summary

- Belle has established many historical measurements, still producing interesting results, and more to come soon
- Belle II physics program is extremely rich, can't be covered in one talk, and more topics not discussed today includes
 - Radiative and electroweak B decays
 - Charm physics
 - New resonant structure
 - Search for dark sector (\Rightarrow Y.Kwon's talk)

SuperKEKB / Belle II under construction, in good progress

More Slides...

New Physics Wanted

No non-SM evidence found in HEP except for neutrino mass, but...

Observation (Cosmology)

- Matter-dominance \Rightarrow non-SM CP violation, baryon number violation
- Dark matter \Rightarrow weakly interacting massive particle (WIMP)
- Dark energy

Theory Demands

- Cosmological Constant
- Hierarchy Problem \Rightarrow SUSY, extra dimension, ...
- Origin of Flavor Hierarchy \Rightarrow lepton flavor violation, ...
- Strong CP Problem \Rightarrow axion
- GUT

Challenges to Energy and Intensity/Flavor Frontier

[KEKFF2014-fall Y.Grossman]

LHCb upgrade and Belle II

Do we need Belle II when LHCb upgrades and keeps taking data?

LHCb's modes (Belle II can't compete)

- Huge B, B_s , D, D_s production cross-section
- Time-dependent CPV of B_s (Too fast oscillation for Belle II)
- Charged-particle only mode (But somewhat degraded for K_S)
- Low momentum muons (due to boost)

Belle II's modes (LHCb can't do)

- $igodoldsymbol{\in}$ Photons, π^0 , η modes (Unless strong kinematic constraint works)
- igodows Neutrino modes, especially those with au
- Inclusive measurements

Both can do(?) (Partly because LHCb will have more data...)

• Time-dependent CPV of $B \rightarrow J/\psi K_S$ and $B \rightarrow \phi K_S$

Physics Sensitivity Comparison

LHCb's condition

- Now: 1 fb⁻¹ or 3 fb⁻¹ \Rightarrow Run-2: 8 fb⁻¹ \Rightarrow goal 50 fb⁻¹
- Energy increase (7 \Rightarrow 14 TeV) gains production cross-section $\times 2$
- New trigger system gains hadron and electron modes $\times 2$

Belle II's condition

- Now: 1 $ab^{-1} \Rightarrow goal 50 ab^{-1}$
- Better detector may only compensating the increase of background

To compare

• Current sensitivity difference will simply scale to the final goal

Observable	Expected th.	Expected exp.	Facility
	accuracy	uncertainty	
CKM matrix			
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb
ϕ_2		1.5°	Belle II
ϕ_3	***	30	LHCb
CPV			
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb
$S(B_s \rightarrow \phi \phi)$	**	0.05	LHCb
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II
$S(B_d \to K^*(\to K^0_S \pi^0) \gamma))$	***	0.03	Belle II
$S(B_* \to \phi \gamma))$	***	0.05	LHCb
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II
Ada	***	0.001	LHCb
Agr	***	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle H
rare decays			
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II
$B(B \rightarrow D\tau\nu)$		3%	Belle II
$\mathcal{B}(B_d \to \mu\nu)$	**	6%	Belle II
$\mathcal{B}(B_* \to \mu\mu)$	***	10%	LHCb
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_* \to \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab^{-1})
$\mathcal{B}(K \to \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e\pi\nu)/\mathcal{B}(K \to \mu\pi\nu)$	***	0.1%	K-factory
charm and τ			
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
a/pln	***	0.03	Belle II
arg(q/p)D	***	1.5°	Belle II

Physics Reach of Belle II and the LHCb upgrade

(T.Browder ICHEP2014)

- ϕ_1 is no more deviated from $J/\psi K_S$
- Belle II sensitivity $\Delta S_{\phi K_S} \sim 0.03$ similar to current $J/\psi K^0$ (30% smaller error than above plot (LoI) by analysis improvement)

ϕ_3 from $B \to DK$

GGSZ (Dalitz): $D \rightarrow K_S \pi^+ \pi^-$ Dalitz plot directly gives ϕ_3

Best precision

Similar sensitivity for Belle (0.7 ab $^{-1}$) and LHCb (3 fb $^{-1}$) ($\delta \phi_3 \sim 15^\circ$)

GLW: decays to CP final states such as $D \to K^+K^-$

ADS: doubly Cabibbo suppressed decays such as $D^0 \to K^+\pi^-$ • Charged-particle only modes benefits LHCb • Belle II can use π^0 modes, $D^{*0} \to D^0\pi^0$ and $D^{*0} \to D^0\gamma$

ϕ_3 sensitivity

• ϕ_3 is only from tree diagram and is not affected by new physics — important reference

- Current LHCb only δφ₃ < 10°
 (no WA yet including LHCb's latest result?)
 LHCb Run-2 ⇒ δφ₃ ~ 4°
- LHCb upgrade (50 fb⁻¹) $\Rightarrow \delta \phi_3 \sim 0.9^{\circ}$

- LHCb dominates for the time being
- Belle II 50 fb $^{-1}$ is competitive, $\delta \phi_3 \sim 1.5^\circ$

V_{ub} from $b ightarrow u \ell u$

Inclusive (sum of all final states)

- $1/m_b$ operator expansion (OPE)
- $B \rightarrow X \ell \nu$ and $B \rightarrow X_s \gamma$ spectra fixes nonperturbative parameters

Exclusive

- π (or ho etc) is required
- Lattice QCD or QCD sum rule needed for form factor $f_i(q^2)$

$m{B} ightarrow m{D}^{(*)} m{ au}$

BaBar has the most precise result

- Both $B \rightarrow D \tau \nu$ and $B \rightarrow D^* \tau \nu$ deviate from SM
- 2HDM charged Higgs cannot explain both at the same time — more complex Higgs?
- Belle's hadronic-tag results will be announced soon, but it will not resolve the problem
- Belle II data is needed

 $au o oldsymbol{\ell} \gamma$ and $au o oldsymbol{\ell} oldsymbol{\ell}$

• In $\tau \to \ell \gamma$, ISR $e^+e^- \to \tau^+\tau^-\gamma \to (\tau^+)(\nu \ell^-)\gamma$ irreducible

Almost no background in $\tau \rightarrow \ell \ell \ell$ at Belle II

